Improving Local Per Level Hierarchical Classification

نویسندگان

  • Bruno C. Paes
  • Alexandre Plastino
  • Alex Alves Freitas
چکیده

In the domain of many relevant classification problems, classes are organized in hierarchies, representing specialization relationships between them. These are the so-called hierarchical classification problems. Methods based on different approaches have been used to solve them, trying to achieve better predictive performance. In this work, we propose two local per level hierarchical classifiers, which contain distinct strategies to solve inconsistent predictions, common to the local per level approach. We have compared the proposed methods with traditional strategies from different paradigms. The computational experiments, conducted over 18 hierarchical classification data sets, showed that the proposed ideas were able to reach competitive and robust results in terms of prediction accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

Improving Hierarchical SVMs by Hierarchy Flattening and Lazy Classification

Hierarchical SVMs are well-known for their superior performance on text classification problems. They are especially useful on largescale problems where training flat multi-class SVMs is often resourceprohibitive. However, Hierarchical SVMs suffer from compounding of errors with each hierarchy level which may negatively impact their classification performance. We propose k-level hierarchy flatt...

متن کامل

Type Prediction in Noisy RDF Knowledge Bases Using Hierarchical Multilabel Classification with Graph and Latent Features

Semantic Web knowledge bases, in particular large cross-domain data, are often noisy, incorrect, and incomplete with respect to type information. This incompleteness can be reduced, as previous work shows, with automatic type prediction methods. Most knowledge bases contain an ontology defining a type hierarchy, and, in general, entities are allowed to have multiple types (classes of an instanc...

متن کامل

Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification

In most classification problems, a classifier assigns a single class to each instance and the classes form a flat (non-hierarchical) structure, without superclasses or subclasses. In hierarchical multilabel classification problems, the classes are hierarchically structured, with superclasses and subclasses, and instances can be simultaneously assigned to two or more classes at the same hierarch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JIDM

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012